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Abstract

A recent, popular method of finding promoter
sequences is to look for conserved motifs up-
stream of genes clustered on the basis of expres-
sion data. This method presupposes that the clus-
tering is correct. Theoretically, one should be
better able to find promoter sequences and cre-
ate more relevant gene clusters by taking a uni-
fied approach to these two problems. We present
a likelihood function for a “sequence-expression”
model giving a joint likelihood for a promoter
sequence and its corresponding expression lev-
els. An algorithm to estimate sequence-expression
model parameters using Gibbs sampling and Ex-
pectation/Maximization is described. A program,
called kimono, that implements this algorithm
has been developed: the source code is freely avail-
able on the Internet.

Introduction

A promising use for data from expression profiling ex-
periments is as a signpost for finding transcription fac-
tor binding sites. For example, groups of putatively co-
regulated transcripts may be identified by clustering the
expression profiles generated by a series of microarray
experiments (Bucher 1999). The promoter sequences
for each transcript in a cluster may then be fed to a mo-
tif discovery algorithm. Motifs that are common to a
set of apparently co-expressed genes are plausible can-
didates for binding sites implicated in transcriptional
regulation (Wasserman & Fickett 1998).

Such was the approach taken by Church and co-
workers (Tavazoie et al. 1999), who used the k-means
algorithm to cluster the Saccharomyces mitotic cell cy-
cle expression data generated by Cho et al. (1998) (k-
means is an algorithm that clusters points in a multi-
dimensional vector space by repeatedly assigning each
point to the nearest of k cluster “centroids”, calculat-
ing newly optimal centroids for each group, and iterat-
ing until convergence). The Church group then looked
for ungapped motifs in the corresponding genomic se-
quence using a Gibbs sampler (which samples from
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the posterior probability distribution over ungapped
alignments by repeatedly sampling one row at a time,
picking a new indentation by making a random choice
weighted by the probability of the resulting aligned mo-
tif (Lawrence et al. 1993)).

It is acknowledged that this endeavor is fraught with
potential pitfalls: noise in the microarray datasets,
cryptic promoter elements, interactions between bind-
ing proteins and alternative modes of transcriptional
regulation are among the aspects of the underlying bio-
logical process that are poorly understood. However,
even quite simple algorithms that ignore such issues
appear to generate interesting results (Spellman et al.
1998; Eisen et al. 1998; Tavazoie et al. 1999) and so it
seems worth investigating improved methods and for-
malisms that can be of practical benefit.

It is possible to map the two-stage algorithm de-
scribed by Church and co-workers (Tavazoie et al. 1999)
into an integrated likelihood framework. The two
stages—k-means clustering of expression profiles fol-
lowed by Gibbs sampling of sequences—can be viewed
as operating on the marginal distributions of a joint
probabilistic model for sequence and expression data.

Why is it useful to have an integrated likelihood
model? One reason is that the two-stage algorithm
and the integrated algorithm are solving subtly different
problems. Our integrated algorithm can be summarized
as:

Find clusters of genes that have:
(a) similar expression patterns and
(b) similar promoters.

On the other hand, the two-stage algorithm can be
summarized as:

Find genes with similar expression patterns,
then see if they have similar promoters.

In particular, with the two-stage algorithm, the pres-
ence or absence of a promoter motif can have no in-
fluence on which cluster a gene is assigned to. This



is reminiscent of a situation sometimes encountered in
medicine, where several distinct genetic diseases can
cause thoroughly similar symptoms and thus be naively
diagnosed as the same disease. Furthermore, the two-
stage algorithm cannot easily apply any penalty for
finding the same motif in two different clusters. In the
integrated algorithm, however, motifs can play a key
role in determining the overall clustering pattern.

The two-stage algorithm is suited for validating the
hypothesis that similar expression profiles can imply
transcriptional co-regulation via shared transcription
factor binding sites. Once this is taken as a fact, the
integrated method may be used as a more effective way
to find meaningful clusters and promoters. The hope is
that using an integrated approach and a better formu-
lated optimization problem will result in significantly
improved discriminative power.

In this abstract we describe how to use just such
an integrated model for identifying transcription factor
(TF) binding motifs. We start, following Bishop (1995),
by noting that the k-means algorithm is itself a special
case of a parameter estimation algorithm (namely the
Expectation/Maximization or EM algorithm) applied
to a mixture density where the mixture components
are spherical Gaussian distributions. Generalizing, we
allow arbitrary variance (and covariance): this gives us
a prior model for expression profiles within the frame-
work of “Gaussian processes”. The description of the
sequence model closely follows that of Lawrence et al.
(1993), since their development is already probabilis-
tic. We then show how to combine the two models and
suggest an adaptation of the Gibbs sampling and EM
algorithms to the resulting joint model.

Finally, we direct the reader to an implementation
of this algorithm: the kimono program (k-means
integrated models for oligonucleotide arrays) which,
despite the acronym, can be used with any source of
quantitative expression data—not just microarrays! We
illustrate the characteristic behavior of the program
with data from simulations. The source code for ki-
mono is covered by the GNU Public License and will
remain available to all users free of charge. We strongly
encourage interested parties to contact us to discuss
performance, suggest improvements or just offer praise.

Definitions

We begin by introducing some notation for the experi-
mental data. Let the number of gene transcripts be G.
The observed sequence and expression data for the g’th
gene are S9) and E® respectively (we will use the no-
tational convention that x is a scalar, T is a sequence,
Z is a vector and x is a matrix).

We suppose that each upstream sequence is the same
length, L. Thus, sequence S9 is defined to be the L
bases upstream of the transcription start site for gene
g, and the i’th nucleotide of this sequence is denoted by

S_(g)
P
The expression profile £ for gene g is a vector of

real numbers, typically log intensity-ratios (Spellman et
al. 1998), presumed to be related to mRNA abundance

levels. Thus E;g) is the “expression level” measured
in experiment z, with 1 < x < X. We suppose that
the X experiments form a time series (although this
is not a restriction—see below), so that experiment z

corresponds to time t, and B = E©) (tz). Note that
this allows for multiple sampling runs if ¢, = ¢, for
some x # y.

The notation of the previous paragraph could still
be considered valid for experiments that did not cor-
respond to a time series. For example, ¢, could be
a discrete-valued variable representing the tissue from
which the cells in experiment x were taken. The point is
that we want to be able to model correlations between
different expression experiments; if the experiments are
actually independent (or more likely, if it’s too hard to
figure out which experiments should be correlated with
which) the usual practice of assuming the experiments
are independent can readily be carried out.

The expression model, £

In the k-means algorithm, each cluster may be con-
sidered to have a single vector-valued parameter, the
“center” of the cluster. The goodness-of-fit of a cluster
is measured by an error function defined as the total
squared distance (i.e. the sum-of-squares differences)
from the cluster center to each of the member points
(Tavazoie et al. 1999). The optimal position for the
cluster center is clearly the mean (centroid) of all the
member points.

We seek a likelihood model £ that is analogous to a
cluster. Comparing the sum-of-squares error function
to a log-likelihood, the most obvious candidate would
be a multivariate Gaussian density, i.e.

Pr [E(g) + AlE, [, U] ~

_IEY - g?

~X/2
(2m0?) exp 53

1 -(28)F (1)

where fi and o are the (vector-valued) mean and
(scalar-valued) standard deviation of the cluster of ex-
pression profiles generated by the model £. Note that
[ is an adjustable cluster-specific parameter (equivalent
to the cluster centroid vector in the k-means algorithm)
whereas o is treated as a fixed, global parameter.

The A’s arise because, strictly, we have to integrate
over an (arbitrarily small) volume of E(Q)—space to get
a finite probability; from now on, we will drop these
terms from our notation.

The connection to k-means can be made more ex-
plicit. If we posit that each of the observed E(9) vectors
were generated by one of k alternative models, denot-
ing by &£ (m) the model which gave rise to the g’th
vector, and if we treat the m(9) as missing data and
apply the EM algorithm, then the k-means algorithm



emerges naturally in the limit ¢ — 0, since the pos-
terior distribution Pr [5 (m(g))|ﬁ(9), ] tends to one for

the cluster nearest to £ and zero otherwise (Bishop
1995). We will elaborate on this treatment below.

We can generalize equation (1) by replacing the vari-
ance o2 with a covariance matrix N (for “noise”, since
the scale of this matrix should reflect the expected dis-
persion of the cluster):

Pr [E<9>|5,,1, N] -

rIN) 2 exp |- (B9 - NS - )] (2

We complete the generalized model by writing down
a prior distribution for the adjustable parameter fi. We
use another multivariate Gaussian, with mean 7 and
covariance matrix C:

Pr[i|7,C] =
- 1 . Te—i/n o
@r|C)™ exp |- (A-)'C @~ 7)| ()

For later convenience, we also introduce a “multiplic-
ity” p(9) for each gene, representing the number of exact
duplicates of each profile there are in the dataset (one
can also think of this value as a weight for the gene).
The total log-probability (including the likelihood and
the prior) is then

z[ﬁ,ﬁ|5,@,ﬁ]:

G
log Pr[jil7, C] + > p(*) log Pr [ @€, i,N]| (4)

g=1
where © = {N, 7, C} is the global expression model
parameter set, 7 = {p\9)} is the multiplicities vector
and we have introduced the shorthand E to represent
the entire set of expression vectors {E(®)}. Note that
the vector § is indexed by gene g, as contrasted with
vectors like i or 7 which are indexed by experiment z.
The posterior distribution of the signature expression

profile for the cluster, Pr [ﬁ|l§, ] , is also a multivariate

Gaussian. From (4), the optimal value for f is given by
the matrix equation:

G -1
ﬁ(opt) _ (C—l + Zp(g)N—1>

g=1
G
x (Clﬁ +NY p<9>E<9>> (5)
g=1

In the limit of large G (o, strictly speaking, as 3 p(9)
tends to infinity), this tends towards the p(9)-weighted
centroid of the E® vectors, as with k-means.

Can we find an interpretation for these Gaussian pri-

ors? Recalling that E;(ug) is the expression level at time
tz, equation (3) implies that the probability distribu-
tion over all possible cluster expression profiles {u(t)}
is uniquely specified by the covariance between any two
points, i.e. the entries of the covariance matrix:

Coy = ((u(t) — v(t2)) - (1(ty) = V() oy

Such probability distributions over function spaces
are described by the theory of Gaussian processes
(GPs), mathematical models for randomly varying sig-
nals (MacKay 1997). A GP has the property that if
it’s sampled at any number of points, the joint distri-
bution of the sample levels is a multivariate Gaussian.
This is because a GP may be viewed as an infinite-
dimensional Gaussian distribution (one dimension for
every possible value of ¢) and the marginal distribution
of any subspace of a multidimensional Gaussian is itself
Gaussian.

An almost-trivial example is white noise: if samples
are taken at a set of time points, each sampled value will
be independently normally distributed. In this case,
the covariance matrix is just the identity matrix. This
is therefore the implicit process underlying equation (1)
and the k-means algorithm.

The great boon of Gaussian processes is the avail-
ability of well-studied covariance functions correspond-
ing to e.g. Brownian motion, short-range fluctuations,
quasi-periodic oscillations or indeed any given power
spectrum (Abrahamsen 1997). Covariance functions
appropriate to a system of interest can be chosen: for
example, when clustering cell-cycle transcript levels,
one might choose a C matrix representing a weakly
periodic prior for the mean cluster signal and an N
matrix representing quickly-damped fluctuations from
this signal, plus uncorrelated experimental errors, for
the individual gene profiles. In the event that the ex-
perimental protocol induces correlated errors, these can
also be modeled in this framework. Suitable covariance
functions for this example are described by MacKay
(1997).

The sequence model, S

We use a fixed-length, ungapped, nonrepeating model
for TF binding motifs, following Lawrence et al. (1993).
This model is simplistic and has been improved upon
(Neuwald, Liu, & Lawrence 1995; Zhu, Liu, & Lawrence
1998; Roth et al. 1998), but it is a plausible first ap-
proximation. Since it has been described extensively
elsewhere, we will keep our (slightly modified) defini-
tion terse.

Denote the motif model by & and the “null” model
by Sy. The probability of nucleotide n under the null
model is p, (i.e. pis a vector indexed by type of nu-
cleotide), so that the null model likelihood is:

L
Pr [5(9)|S@,ﬁ] = Hpsigg) (6)
i=1



Suppose that the weight matrix for the motif model
is q, so that the probability of seeing nucleotide n at
position j in the motif is g;,. Fix the motif length
at n. The prior probability of the motif is given by a
product of independent identical Dirichlet distributions
for each position j, with pseudocounts D = {D,} (these
counts will typically be proportional to the null model
probabilities p,):

mwﬂzﬁmmﬁ (7)

Here gj;) is the vector of nucleotide probabilities for
position j and D(f|@) is the Dirichlet distribution with
pseudocounts @ (Durbin et al. 1998).

Consider the first base in sequence g that is aligned
to the motif. Let the index of this position be a(9) (so
that the complete alignment is specified by the gene-
indexed vector @ = {a'9)}). Then the odds-ratio of the
aligned motif to the null model is:

Pﬁ@%dﬂ&ﬁd_qﬁ%ﬁi@q
PrS@[Se, ] ik pgw

J=1 j+ale) —1

(8)

We can optimize the total log-likelihood, including
the Dirichlet prior, by setting the weight matrix en-
tries proportional to the column nucleotide frequencies
plus the pseudocounts. For convenience we first recall
the multiplicities p(9) introduced for expression data
in equation (4) to write down an analogous total log-
probability for the sequence data:

L[S,d,q]8,0",p] =

log Pr [q|1ﬂ + ip(g) log Pr [.5_'(9),a(9)|5,ﬁ, q] 9)

g=1

where ©' = {p, D} is the global sequence model pa-
rameter set and S is a shorthand for the entire sequence
dataset {S(9)}.

The optimal weight matrix entries are then given by
the (multiplicity-weighted) nucleotide frequencies, plus
pseudocounts:

Dp+3. 5@ P9
{g:S" g n}
(Opt) — ital9) -1 (10)

q. =
an an Dn’ + chzl p(g)

The update procedure for Gibbs sampling is as fol-
lows:

e For each gene g (picked in a random order)

— For each possible alignment a = a{9), calculate:

* the optimal weight matrix qg()pt)

* the  corresponding  alignment
Pr[30),0,qPY}S, 5

probability

— Sample an alignment from the posterior distribu-
tion Pr [a, qg()pt) Ei28 S,ﬁ]

Numerous generalizations of this algorithm—for ex-
ample, to look for multiple motifs (Neuwald, Liu, &
Lawrence 1995), or to search the complementary strand
of DNA (Fickett 1996)—have been published. System-
atic studies of the convergence properties of the algo-
rithm, whether empirical or theoretical, are less numer-
ous. A heuristic rule is to use the expected information
content ratio of sequence data to motif as a guide to
the number of iterations to run. Another useful rule
of thumb is frequently to start sampling from scratch
with a random seed alignment (but how frequently is
“frequently”?). Arrival at the same solution from inde-
pendent random seeds seems to be a good indicator of
having found the global optimum (Lawrence 1996); we
call this the déja vu heuristic.

The sequence-expression model, S&

Combining equations (2) and (8), we can now write
down a joint likelihood for a transcript’s promoter se-
quence alignment and expression profile:

Pr [SE®,a(9)|5¢,4,0"] =
Pr [S(g>,a<9>|s, 7 q] Pr [E‘<9>|g, i N] (11)

where SE( is the combined sequence-expression in-
formation for gene g, A = {q,ji} are the variable
parameters, ©" = {0,0'} = {N,7,C,p, 5} are the
fixed global parameters and S is our notation for the
sequence-expression model.

We can also write down the total joint log-probability
for the entire set of transcripts by combining equa-
tions (4) and (9):

L‘[SE,&’,A|S€,®”,;§’] -
L[S,dq]8,0,5+L [E,mg,@,ﬁ (12)

Clustering using multiple S€ models

We now move to the question of how to cluster se-
quence and expression data simultaneously using multi-
ple competing S€ models. The prototype optimization
algorithms (Expectation/Maximization for clustering,
Gibbs sampling for alignment) have already been intro-
duced, so it only remains to combine them. We will
describe just one of several ways that this can be done.

We must introduce some more notation (the last!).
Suppose that we have k sequence-expression models;
the m’th model is S|, and its parameters are A, =
{@m)> Aimis Him }-

We also allow a null sequence-expression model, S€y.
The null sequence likelihood is given by (6) and the null

expression likelihood by setting ji equal to E© in (3).



The joint null likelihood is the product of these two
likelihoods

Pr[SE"|5g9,0"] =
Pr [§<9>|s@, ﬁ] Pr [E<9>|50, i N (13)

by analogy with equation (11).

The null sequence model generates independent un-
related sequences and the null expression model gener-
ates expression profiles each of which is effectively an
independent one-member cluster.

The basic job of our clustering algorithm is to assign
each gene to a cluster. We handle this in our formal-
ism by having a different multiplicities vector for each
model, denoting the vector for the m’th model by pi,,
(and for the null model, ). Then the act of assigning
gene g to model S, is equivalent to setting

@ _J 1 ifm'=m
p[m’]_{O if m' #m (14)

In our Gibbs/EM algorithm, the p[(fn)] are the miss-
ing data. The E-step of the EM algorithm involves
setting these missing data to their expectation val-
ues according to the posterior probability distribution

Pr [Sg[mﬂgﬁ(g), ] (i.e. multiplying equation (14) by

this probability and summing over m).
In other words, as with k-means, we effectively force
the models to compete to explain the genes. At the

same time, by allowing the pfgl)]
ued expectations rather than zero or one, we allow un-
certainty where k-means does not. See e.g. Bishop
(1995) for an alternative explanation of this approach.

We are now ready to describe our Gibbs/EM update
procedure, which is:

to be continuously val-

e For each model m

— For each gene g (picked in a random order)
(9)

[m]
rior distribution Pr [a, q[(::j)? |59, S[m],ﬁ[m]] (the
Gibbs sampling step)

*x Sample an alignment a = a;/; from the poste-

(9)

[m]
ors Pr [Sg[m],a[(gm)],A[mHS'E_"(g),@”] (the Expectation
step)

e Set the cluster centers fij,,,; equal to the optimal val-

e Set the multiplicities p equal to the posteri-

ues ﬁ(oﬁ)t) (the Mazimization step)

[m

Relevant equations (apart from Bayes’ rule) are (7),
(8) and (10) for the Gibbs sampling step, (12) and (13)
for the Expectation step (we can also introduce prior
model probabilities Pr [SE[,,;| here) and (5) for the
Maximization step.

Another way of viewing this algorithm is as a mix-
ture density estimation problem, where a k-component
mixture of S€ models must be fit to an observed scatter-
ing of sequence-expression data. Viewed this way, the
oft-quoted limitation of k-means (that the parameter k
must be known in advance) seems not insurmountable,
as mixture density estimation when the number of com-
ponents is unknown is a familiar problem in Bayesian
statistics.

A note on scaling of expression data

Consider what happens if we take a couple of real num-
bers, 9 and B0, and use them to scale/offset the
expression data for gene g by applying the mapping

Eg(gg) — exp [—7(9)](E§9) - ﬁ(g))

to all likelihood formulae involving expression pro-
files.
If we choose

X
1
ﬁ(g) - E :E;g)
X =1

X

1. [1
= Ll L (9) _ ()2
79 = QIOg[XE (EY T")]

r=1

then this is equivalent to the “normalization” of pro-
file vectors that is commonly applied to expression data
preceding analysis. While this normalization is effective
as a correction for biases in the experimental protocol,
it is also crude: it does not distinguish between sys-
tematic experimental errors and genuine differences in
transcription levels.

Our likelihood framework permits a more princi-
pled approach. We can incorporate prior probabilities
for the model-independent scaling parameters 319 and
~(9). Suitable priors might be the Gaussian distribu-
tions BY9) ~ N(0,72) and 79 ~ N(0,v?). The values
of 89 and v(9) can then be sampled at some point dur-
ing the Gibbs/EM update procedure, e.g. between the
Gibbs and Expectation steps. One way to do the sam-
pling is to generate values from the prior distribution,
then choose one of these values randomly according to
the likelihoods given by equation (12).

It is equally straightforward to incorporate
experiment-dependent parameters into the scaling, e.g.

Eéy) — exp [—y9) — 5(x)](E;g) — B9 — (@)

with 6(®) ~ NV(0, %) and @) ~ N(0,¢?).

When such additional parameters are allowed, we
may constrain them (by keeping 7, v, ¢ and ¢ small)
to avoid overfitting when the dataset is sparse.

Implementation

We have developed a program, called kimono, to
implement the Gibbs/EM algorithm for sequence-
expression clustering with competing S€ models. The



source code for kimono is freely available, under the
terms of the GNU Public License (GPL 2000), from the
following URL:

http://www.okchicken.com/ yam/kimono/

kimono implements all the features described in this
abstract, including arbitrary covariance priors, null se-
quence and expression models, prior probabilities for
models, reverse strand sampling, multiple re-seeding
and the déja vu heuristic. It also offers some useful fea-
tures not covered here, including automatic null model
optimization and an experimental implementation of a
simulated annealing version of Gibbs/EM.

The program is easy to use: it understands standard
file formats (FASTA format for sequence data (Pear-
son & Lipman 1988), Stanford format tab-delimited ta-
bles for expression data (Spellman et al. 1998)). In
addition, it uses a customizable multi-priority logging
system and displays friendly help messages and errors.

The acronym kimono stands for k-means integrated
models for oligonucleotide arrays. We would however
like to point out that nothing in the present formalism
prohibits the use of quantitative expression data from
large-scale functional genomics experiments using tech-
nologies other than microarrays.

kimono is implemented in C++ using the Standard
Template Library and compiles cleanly on a RedHat
6.0 GNU/Linux system using the gcc compiler, version
egcs-2.91.66.

Figure 1 shows sample paths of log-likelihood over
time illustrating kimono’s typical behavior on simu-
lated data. The paths shown were selected for illustra-
tive purposes from ten randomly seeded runs on each
of four simulated datasets. The variables distinguishing
the four plots are the expression signal-to-noise ratio
defined by

e = tr(C)/tr(N)

and the sequence signal-to-noise ratio ¢ defined by

log Ly = Zqun log (;J—"
i n "

These signal-to-noise ratios refer to the actual pa-
rameters used in generating the data. The kimono
program was run using its default settings, except for
k which was set to 3 to match the simulated data. The
default kimono parameters are the same as the sim-
ulation parameters listed in the caption to Figure 1,
with the exception of the C and N matrices (which are
equal to the identity matrix by default); also, the pseu-
docounts D,, are set to 0.1p,, where the null nucleotide
probabilities p,, are automatically estimated from com-
position of the sequence database.

The graphs in Figure 1 exhibit several features char-
acteristic of this algorithm. Whereas the Gibbs sam-
pler for a single alignment initially spends most of its
time exploring a more-or-less flat log-likelihood land-
scape, or “plateau”, before finding a seed for the true

Sequence | Rounds to | Time (us) per
length convergence | residue cluster
20 12+ 6 29+ 4

30 36 £ 19 26 = 2

50 49 £ 23 28 £0.8

70 61 £ 25 30 £ 0.6

110 66 + 18 29 £ 0.2

150 155 + 36 28 £ 0.07

230 412 £ 55 28 £ 0.06

310 674 + 47 28 + 0.05

470 984 + 13 27 £ 0.05

Table 1: kimono performance on a 450MHz Red Hat
Linux Pentium system. In each round, the alignment of
every sequence to every model was sampled once. The
simulation parameters were: number of genes G = 24,
number of models k = 3, nucleotide probability p, = i,
motif length 1 = 10, expected expression profile 7 = 0
and covariance matrices N and C equal to multiples
of the identity matrix, with expression signal-to-noise
€ = 50. Sampling was terminated after 1000 rounds

regardless of convergence.

signal and then rapidly converging to the global opti-
mum (Lawrence et al. 1993), the multiple-model sam-
pler steps through several plateaux at different levels
as the distinct clusters converge semi-independently on
their respective solutions. The convergence of different
clusters is not expected to be completely independent,
as the arrival of each cluster at its optimal alignment
helps to fix some of the weights p’ correctly, and thus
limits the introduction of noise into the other align-
ments.

For the data shown, the simulated expression signal-
to-noise ratio € is quite large and so the assignments
of genes to their correct clusters is reasonably well con-
strained. However, as € or ¢ is reduced, the clustering
becomes more uncertain, with the observable effect that
the plateaux become bumpier and start to blur into
one another. One corollary of this is that one starts
to see the algorithm step downwards to less favorable
plateaux. Of course, this will happen (albeit less fre-
quently) even in the simple case, when there’s only one
plateau separated from the optimum by a large jump in
the log-likelihood. This behavior can be seen in plot ¢
in Figure 1.

A characteristic feature of Gibbs sampling in gen-
eral is that the distribution of convergence times has a
long tail. This is apparently due to the algorithm oc-
casionally getting stuck in an appealing local optimum.
Convergence is generally slower when ¢ and v are small.

An idea of the running speed of kimono can be
gained by studying Table 1. Extrapolating to 30
clusters—the number used by Tavazoie et al.—and the
full complement of roughly 6,000 yeast ORFs, conver-
gence is expected in approximately one month on a
450MHz Pentium system. Our procedure is inherently
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Figure 1: Sample paths of total log-likelihood versus number of iterations, illustrating kimono’s characteristic
behavior on simulated data generated with number of experiments X = 10, number of genes G = 24, number of

models k = 3, nucleotide probability p, = 1

7> motif length n = 10, expected expression profile 7/ = 0 and covariance

matrices N and C equal to multiples of the identity matrix. The kimono parameters were left at their default
settings, except for k which was set to 3. The Gibbs/EM algorithm was halted when the correct solution was
approached to within a mildly error-tolerant margin. Different paths in each graph correspond to different random
seeds. a: sequence length L = 110, expression signal-to-noise ¢ = 50, and sequence signal-to-noise 1y ~ 350. b:
L =110, =20, ¢ ~ 350. ¢: L =230, ¢ =50, ¢ ~170. d: L =230, ¢ = 20, ¢ ~ 170.



slower than the two-stage algorithm of Tavazoie et al.,
since their algorithm samples one alignment per gene
where our algorithm has to sample k such alignments.
It would be straightforward to parallelise this extra
sampling duty on a multiprocessor system. At the time
of writing, there is also plenty of room for optimizing
the C++ code.

The two-stage algorithm is a special case of our al-
gorithm that can be obtained formally by scaling the
matrices C and N by some parameter A and sampling
the alignment for each gene to only the most plausible
model with some probability p. As A - 0 and p — 1,
then the two-stage algorithm is approached.

Discussion

We have described a probabilistic model—the S&
model—that relates a promoter sequence to a quan-
titative expression profile of the corresponding down-
stream message. We have shown how to use multiple
S& models for identification of putative transcription
factor binding sites, giving a Gibbs/EM algorithm for
model training. The program kimono implements this
algorithm; its source code is freely available from the
Internet.

Clearly, probabilistic modeling is not limited to un-
gapped motif models and simple Gaussian process clus-
ters. It is possible to adapt the approach that we have
described in many ways. One could imagine extending
the S and £ models described here, replacing them with
other models, adding new features or modeling differ-
ent kinds of functional genomics data. Although we do
not intend to list every possible modification, there are
some that are worth mentioning.

One obvious extension to the expression half of the
SE model is to include multiple classes of model. For
example, when clustering a cell-cycle dataset one might
allow for both periodic and non-periodic clusters. Re-
lated ideas include allowing the covariance matrix to
be a model-specific variable and improving the scaling
model for experimental and gene-specific bias in the
light of more experimental data.

Promoter sequence models are also worth develop-
ing, for a broad range of applications. The most obvi-
ous probabilistic framework in which to do this seems
to be the Hidden Markov model (HMM). In fact, the
ungapped motif models that we use are special cases
of profile HMMs with no insert states, delete states or
internal cycles. One basic improvement, then, would
be to allow loop transitions within the HMM (and thus
multiple instances of the motif). Another would be to
place a prior distribution over the motif length, allow-
ing it to vary (note however that a geometric prior is
far too broad for this job, leading mostly to long, ram-
bling, weak pseudo-motifs; a narrower distribution, like
a Gaussian, might work).

A familiar example—the “TATA box”—motivates
development of better promoter models for use with
our method. Since the TATA box motif is found in the
majority of eukaryotic promoter regions regardless of

the transcriptional behavior of the downstream gene, it
will have some overall aggregating effect on the clus-
tering. This example shows that, counterintuitively,
the integration of more (sequence) data can potentially
lead to coarser clusters if an incorrect model is used (al-
though we expect this particular example to be handled
somewhat better by our Gibbs/EM approach, which al-
lows for uncertainty in the cluster assignments, than
by other clustering algorithms, such as k-means, which
make “hard” decisions). It is easy to become pessimistic
about the chances of ever modeling promoters well, but
it is good to remember that, pragmatically speaking,
one doesn’t need to have a perfect model in order to
generate leads that experimentalists can pursue.

Another route to new models is to attempt to place
procedures that are not explicitly probabilistic within a
Bayesian framework, as has been done previously with
the k-means algorithm and mixture density estimation
using Gaussian basis functions. With many procedures,
the Bayesian interpretation (or the nearest approxima-
tion) may be less obvious than the relatively simple
mapping between k-means and Gaussian processes. An
interesting candidate for this approach might be the
logistic regression model for aggregating promoter se-
quence motifs that was proposed by Wasserman & Fick-
ett (1998). With respect to the analysis of expression
data, the support vector machine (SVM) approaches
used by the Haussler group are promising (Brown et al.
2000); their work also differs from ours in taking a su-
pervised learning approach, where at least some of the
cluster membership assignments must be pre-specified
by the user.

In addition to these improvements to the probabilistic
model, there may be many potential improvements to
the Gibbs/EM algorithm that we use to train the model
(i.e. to identify and characterize clusters). Examples of
such improvements could include simulated annealing
approaches (Gilks, Richardson, & Spiegelhalter 1996)
or incremental Expectation Maximization (Neal & Hin-
ton 1993). It would also be useful to be able to sample
over unknown parameters, such as the number of clus-
ters k, using Markov Chain Monte Carlo methods.

An exciting prospect for the future is the automatic
identification of regulatory networks on the basis of
functional genomics data (D’haeseleer et al. 1999). In
a probabilistic framework, this is equivalent to relax-
ing the independence assumption for transcripts. This
presents many challenges to the statistical analyst, in-
cluding issues of how much data is needed to identify
interactions, a problem common in MCMC analysis.
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